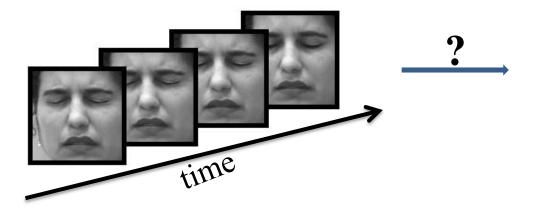
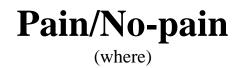
#### Weakly Supervised Pain Localization using Multiple Instance Learning





#### Karan Sikka<sup>1</sup>, Abhinav Dhall<sup>2</sup>, and Marian S. Bartlett<sup>1</sup>

<sup>1</sup>Machine Perception Lab University of California, San Diego

<sup>2</sup>Australian National University



### Motivation

- Pain monitoring critical for clinical applications.
- Spontaneous expression.

- Classification difficult compared to posed expressions (CK+ dataset).

- Pain has high variability (expression, perception, location and duration)
  - Efficient prediction algorithms.

# Frame 30

#### MGL 2.7.1

### **Problem Definition**

- Subjects undergoing shoulder pain in videos.
  - UNBC MC-Master Pain Dataset\*.
  - Ranging from 60-600 frames.

Classifying and localizing pain in videos.
 – Sequence level ground-truth labels.

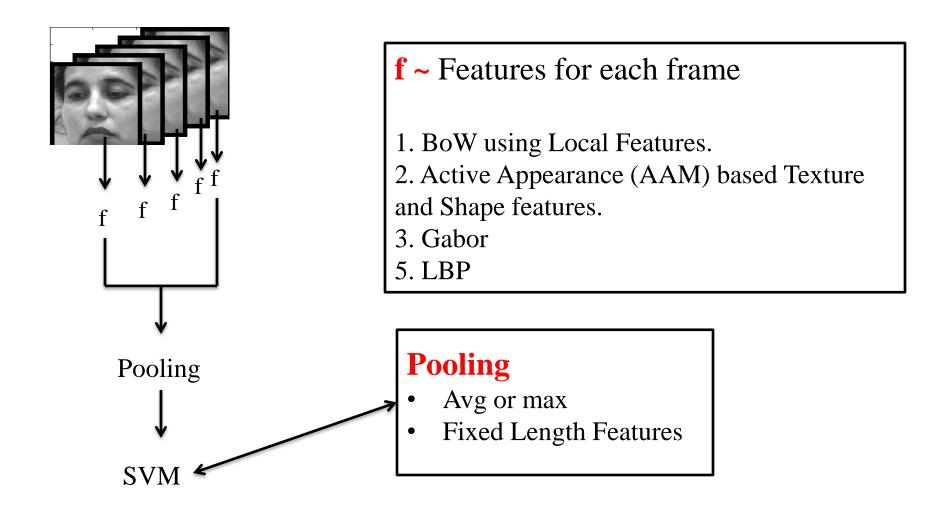
Lucey et. al., PAINFUL DATA: The UNBC-McMaster Shoulder Pain Expression Archive Database, FG'11

## Challenges

- Ambiguity introduced by **sequence level labels**.
  - Time points and duration of pain unknown apriori.
- Incorporating dynamics/temporal information.

• Temporal segmentation is hard in itself.

#### Previous Approaches 'Classical' Fixed Length Features



<sup>\*</sup>Laptev et. al., Learning Realistic Human Actions From Movies, CVPR'08

#### **Previous Approaches** 'Classical' Fixed Length Features

- Most common approach.
- Works well when action spans whole videos
  - Facial expression classification (CK+ dataset).
  - Action classification (KTH dataset).
- Pooling features will not work well for long videos.
  - Kills the signal of interest.
  - Localized instead of global approaches required.

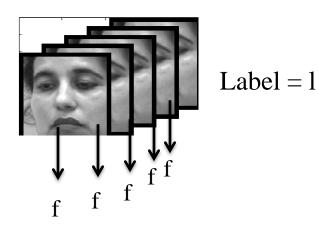
#### **Previous Approaches** 'Classical' Fixed Length Features

- Most intuitive approach.
- Works well when action spans whole videos

   Facial expression classification (CK+ dataset).
   Action classification (KTH and hollywood dataset)

- Pooling features doesn't work well in all cases.
  - Kills the signal of interest.
  - Localized instead of global approaches required.

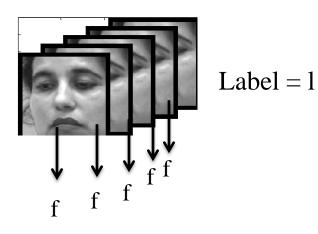
#### Previous Approaches Frame Level Features



- AAM ➡ Clustering ➡ SVM
- Assign labels of sequence to each frames.
- Test
  - Score(video) = Avg(Output(frames)).

#### Ashraf et.al, ICMI'08.

#### Previous Approaches Frame Level Features

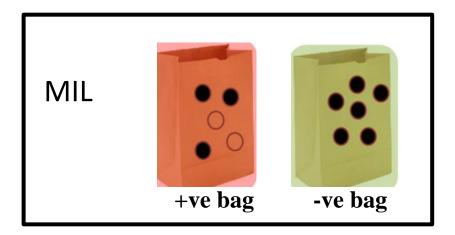


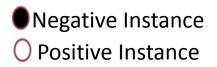
- Assign labels of sequence to each frames.
- Test
  - Score(video) = Avg(Output(frames)).

#### Lucey et.al, ICASP'08.

#### Previous Approaches Limitations

- 1. Assigning sequence label to each frame.
  - Label Ambiguity.
  - ML methods like SVM not robust to outliers.
- Solution: Multiple Instance Learning (MIL).
  - Efficiently handle weakly labeled data.

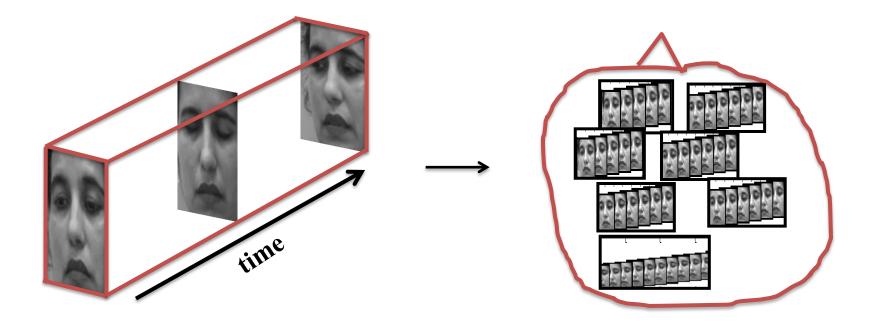




#### Previous Approaches Limitations

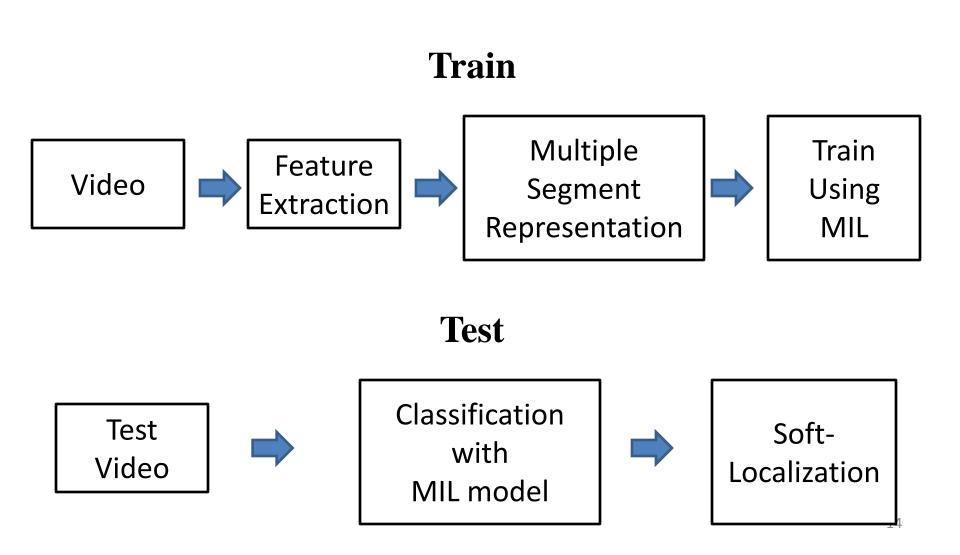
- 2. Treated videos as individual frames.
  - Lack of temporal information.
  - Vital for pain classification.
- Solution: Represent sequences as sets of frames: "Multiple segments"

### Multiple Segment Representation

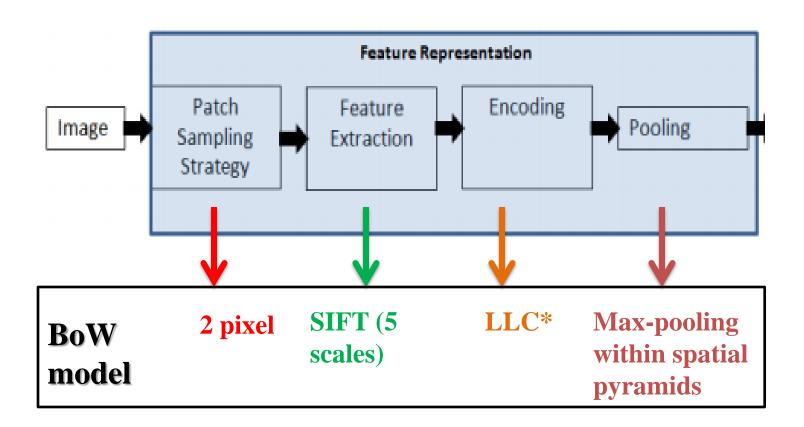


- Extracting at multiple scales and can overlap (no-restriction).
- Allow multiple hypothesis.

# Multiple Segments based Multiple Instance Learning (MS-MIL)



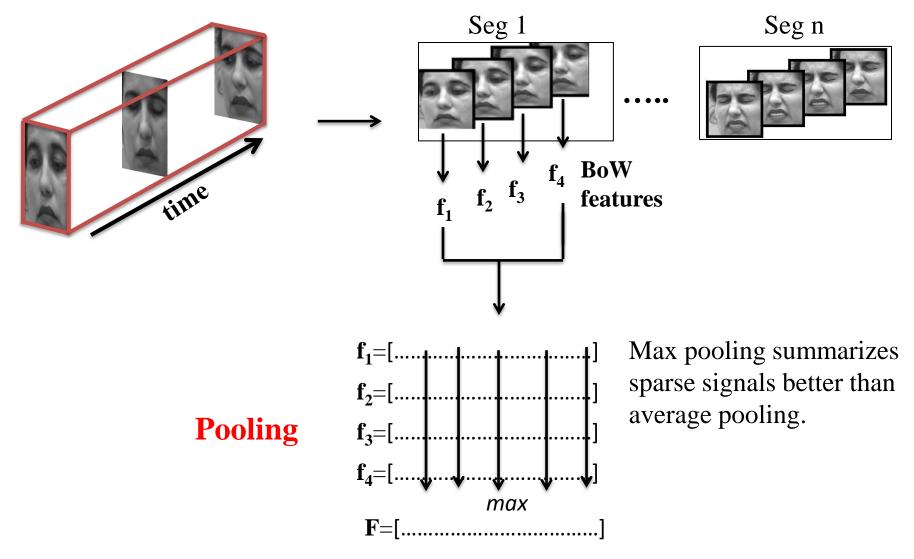
### Feature Extraction - Frames



\*LLC- Locality constrained Linear Encoding

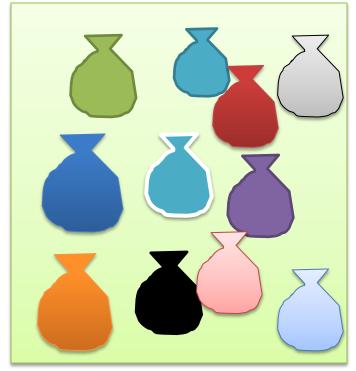
#### Sikka et.al, ECCV'12.

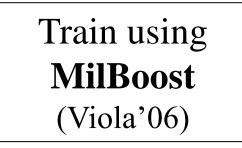
### Multiple Segment Representation



#### MS-MIL Train

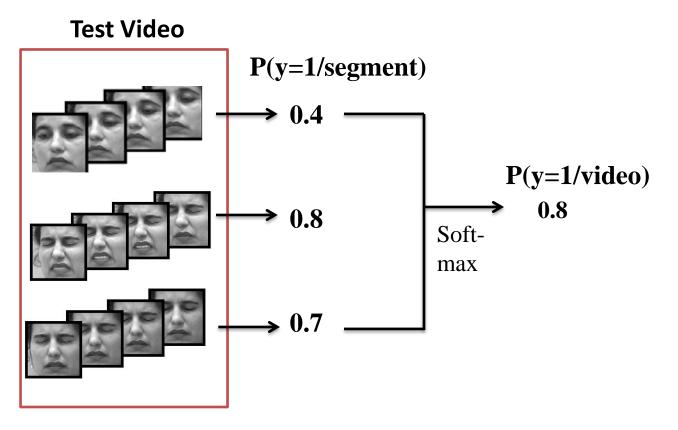




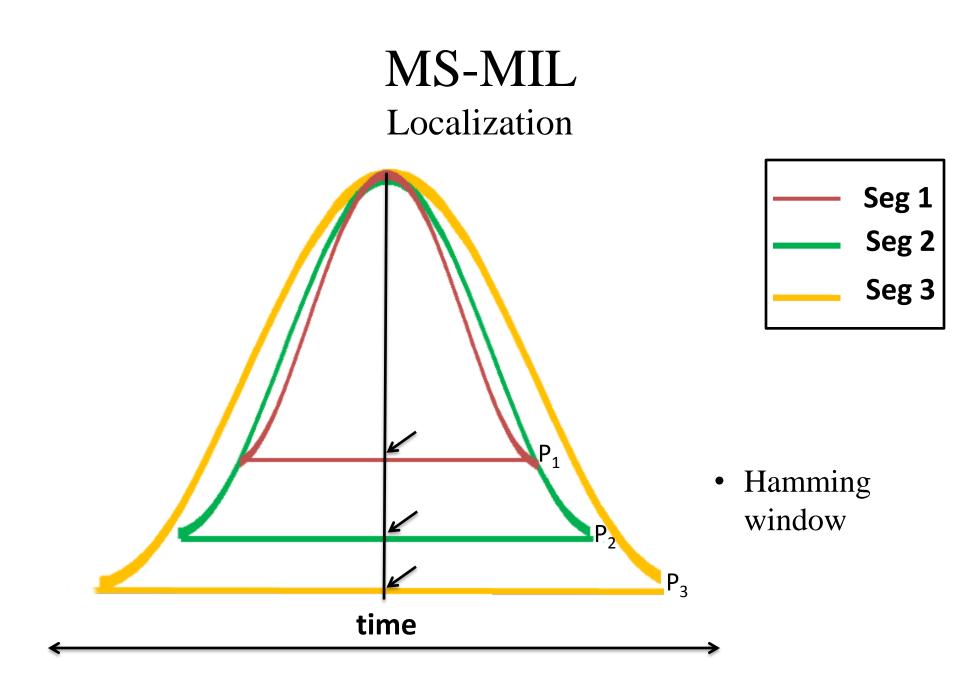


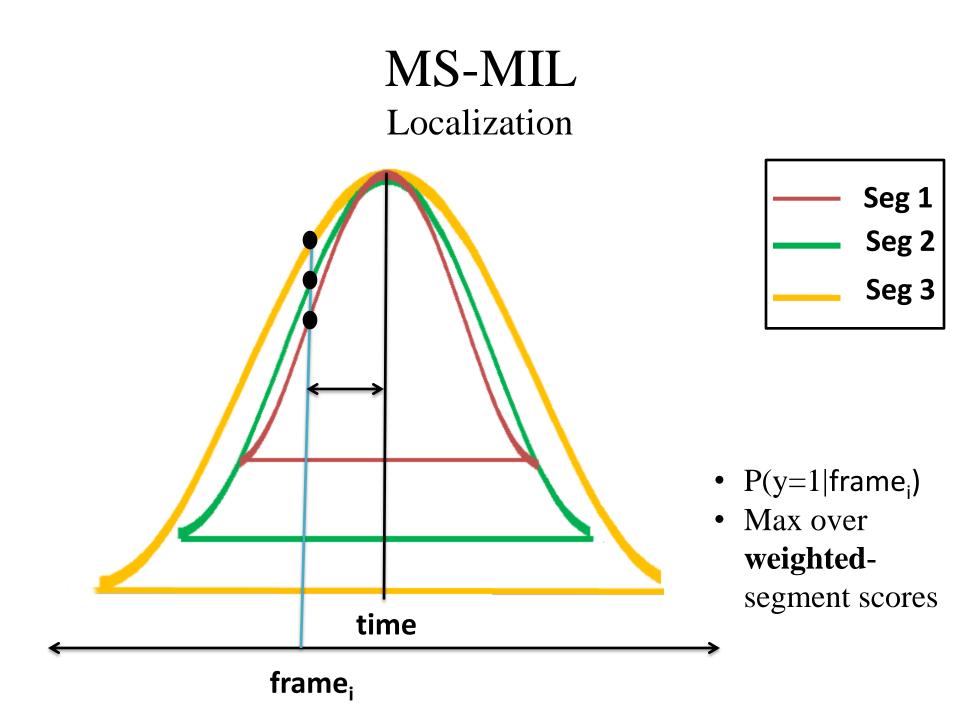
• Training videos as Bags

#### MS-MIL Test



• MIL has a joint optimization framework.





### Experiments

- Leave one subject out protocal.
- 147 videos from 23 subjects.
- Observer Pain Intensity as ground-truth labels.
  - Binarized.
- Faces aligned using provided AAM features.
- Total classification rate at Equal Error Rate.

### **Classification Performance**

| Method                                    | Accuracy | #Subjects | #Samples |
|-------------------------------------------|----------|-----------|----------|
| MS-MIL                                    | 83.7     | 23        | 147      |
| Lucey et.al                               | 80.99    | 20        | 142      |
| Ashraf et.al<br>(as shown in Lucey at.al) | 68.31    | 20        | 142      |
| ML-SVM <sub>max</sub>                     | 70.75    | 23        | 147      |
| ML-SVM <sub>avg</sub>                     | 76.19    | 23        | 147      |

• Shows gains over previous methods.

### **Classification Performance**

| Method                                    | Accuracy | #Subjects | #Samples |
|-------------------------------------------|----------|-----------|----------|
| MS-MIL                                    | 83.7     | 23        | 147      |
| Lucey et.al                               | 80.99    | 20        | 142      |
| Ashraf et.al<br>(as shown in Lucey at.al) | 68.31    | 20        | 142      |
| MS-SVM <sub>avg</sub>                     | 70.75    | 23        | 147      |
| MS-SVM <sub>max</sub>                     | 76.19    | 23        | 147      |

- MS-SVM
  - Each segment assigned the label of the video
  - SVM + score combining rule (max and avg).

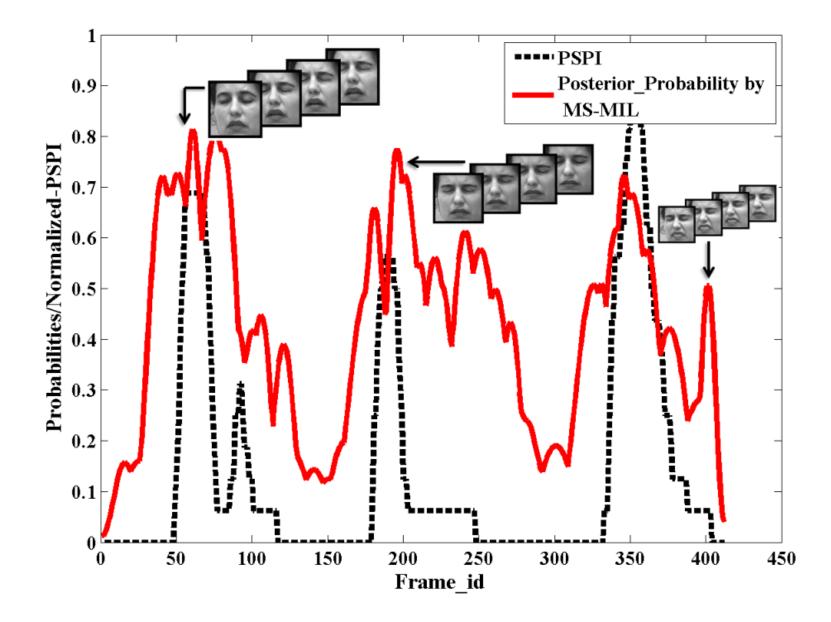
### **Classification Performance**

| Method                                    | Accuracy | #Subjects | #Samples |
|-------------------------------------------|----------|-----------|----------|
| MS-MIL                                    | 83.7     | 23        | 147      |
| Lucey et.al                               | 80.99    | 20        | 142      |
| Ashraf et.al<br>(as shown in Lucey at.al) | 68.31    | 20        | 142      |
| MS-SVM <sub>avg</sub>                     | 70.75    | 23        | 147      |
| MS-SVM <sub>max</sub>                     | 76.19    | 23        | 147      |

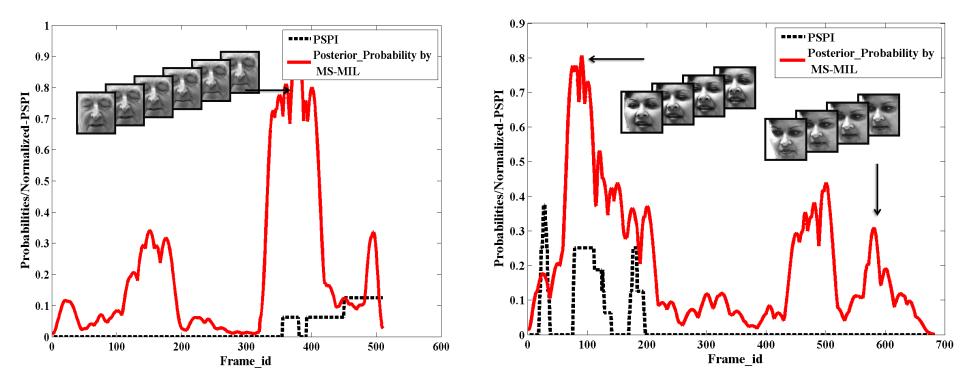
• MS-MIL performs better than it's traditional ML counterparts.

### Localization Performance

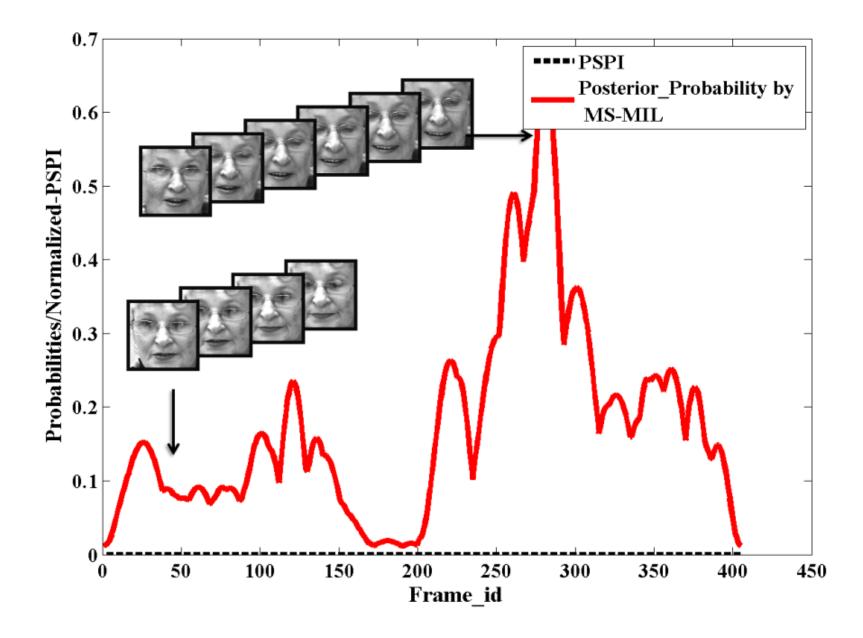
- Compared per-frame probabilities predicted by MS-MIL with human expert pain labels.
- PSPI computes pain intensity based on FACS.
  - PSPI sums intensities of 4 Action Units.
  - Prkachin & Solomon'08.
- Normalized PSPI to 0-1.



### Localization Performance









## Conclusion

- Proposed Novel approach to problem of classifying and localizing pain.
- Highlighted limitations of previous approaches and motivations for current algorithm.
- Compared MS-MIL with
  - Previous Approaches
  - Traditional ML counterparts.
- Localization compared with ground-truth index (PSPI).

# Questions?



Karan Sikka



Abhinav Dhall



Dr. Marian S. Bartlett

Machine Perception Lab, UCSD

Thanks



